Transmitting, Compressing, and Denoising Images

Nathan, Maggie, André, Steven, and Bill Mentored by Dr. William Ross

Overview

- Denoising data
- Data compression

Transmitting data and Images

- Data sent by itself can be corrupted and pieces can be completely lost
- Can "over-send" the data through the use of a Parseval frame
- This way, the frame coefficients could get corrupted, but the changes made to the data are smaller (more diluted).

Method

Dealing with data corruption with and without a frame and compare both to original data

•
$$d = \sum_{i=1}^N \langle d, F_i
angle F_i$$

- Where d is the data, F is the frame, N is the number of elements in the frame
- Corrupt a percent of the frame coefficients using the normal distribution

•
$$\hat{d} = \sum_{i=1}^{N} \widehat{\langle d, F_i \rangle} F_i$$

d hat is corrupt data received from corrupt coefficients

Results

Original Image (20 x 20)

C1: Corruption without a frame
Error: 4.2356

C2: Corruption with a frame
Error: 3.3337

The error was calculated using the norm of the difference between the corrupt image and the original, so the smaller, the better.

Compressing Data

- Storage is limited, how to store less? Data compression
- Fourier Discrete Cosine Transform (DCT) Matrix dotted with image data gives Fourier coefficients
- Fourier coefficients are organized by low to high frequency with the bigger numbers at the start and smaller at the end.
- The end numbers correlate to miniscule details in the image and without them our eyes will barely discern a difference.

Method

- Fourier DCT Matrix dotted with image data
- Keep only a percent of the Fourier coefficients, set the rest (at the end) to zero
- Would only have to store the non-zero Fourier coefficients
- Inverse/Transpose Fourier DCT Matrix to get back to the image data (slightly altered)

Results

Original Image (100 x 100)

Compressed Image (using only 80% of coefficients)

Error: 46.53

Denoising Data

- Data can be corrupted with noise
- Use wavelets to smooth or denoise data

Method

- Take the discrete wavelet transform of the image or data
- Threshold the discrete wavelet transform
- Take the inverse wavelet transform of the thresholded data

Results

Original Noised Denoised

Thanks!