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Machine Learning Systems

% Train on LOTS of data

% Want to generalize from training data to new instances
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Image Classifier
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Training (Supervised)

7/

% Every training sample has a corresponding label

% Start with random parameters
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% Optimize for every training sample




1 Samples

Adversaria

Want to fool the classifier and not the human
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Adversarial Samples (cont.)

% Projected Gradient Descent

> Look of gradient of output

with respect to the inputs

> Tweak the pixels
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Clean Image

DNN Prediction: Stop Sign
model Probability: 99.85%

Adversarial
perturbation

Prediction: 120km/hr
Probability: 99.91%

Adversarial
Example




Explanation Methods

% Models can have billions of parameters

% Want to know model’s “reasoning”

> Also want to detect adversarial samples

Interpretation Interpretation
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LIME (Local Interpretable Model-agnostic Explanations)

% Seeks to explain the classification of specific inputs

% Creates a linear approximation of the model around the input

% Create dataset

>  Sample around original input

> Classify each sample

< Create linear model (explanation) based on dataset



Trigger Warning! Equation!

s Classifier Model: f

*%* Input image: x

> Consists of feature values (Xl, Xy ven) Xn)

fX)=px, +x,+...+fx



More Adversarial Samples

% Fool both the classifier and the explanation method




Certified Adversarial Robustness via Randomized
Smoothing

7/

% Certified radii around points for which all points in “ball” around that point
are classified the same as the certified point

% Created “smoothed” classifier

> To classify input, gather samples close to input, classify them, and return the label that
shows up the most

> Calculate radius using probability of being top label

m Bigger probability -> bigger radii



Adding Robustness to Explanations

% Create “smoothed” explanation method



Current Challenge

% How can we say two explanations are the same?
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> Rank Coefficients?
Py Prar -1 Py P
> Look at just first 10?

> Edit Distance?



Questions?



Thanks Dr. Szajda!
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