Defining Safety For Self-Driving Cars

Planning on the Medial Axis for Non-Holonomic Systems

Vadim Kudlay, André Shannon

Research Mentors: Dr. Jory Denny, Dr. Jeremy LeCrone

Problem and Motivation

For companies developing self-driving cars, how can we maximize safety?

We have seen safety prioritized in simple models.

How can we apply that to car-like models?

https://towardsdatascience.com/planning-the-path-for-a-self-driving-car-on-a-highway-7134fddd8707

Contributions

- Explored the safest points (medial axis) in self-driving car models.
- Proved discontinuity properties in certain settings.
- Developed an algorithm to maximize safety in car-like models using the medial axis.

https://towardsdatascience.com/planning-the-path-for-a-self-driving-car-on-a-highway-7134fddd8707

Introduction

Configuration Space and DOFs

Degrees of Freedom (DOFs): # of independent movements the robot can make

Number of directions it can translate + Number of angles it can be oriented.

Configuration (Cfg): Specification of a robots DOFs
Configuration Space (C-Space, %): All possible Cfgs of a robot

- Robot is a point in C-Space
- DOFs = $\dim(\mathscr{C})$

Workspace: Actual 2D or 3D space in which the robot is moving.

Configuration Space: Parameterization of robot, N-Dimensional

C: All configurations

 \mathscr{C}_{obst} : All configurations in collision

 \mathscr{C}_{free} : All configurations not in collision

Non-Holonomic Systems & State Space

In real systems, constraints on position, velocity, acceleration, .etc limit movement.

(Holonomic) (Non-Holonomic)

State Space: What states can the robot be in?

> Configuration + Time Derivatives

Control Space: What actions can the robot take?

> Turn left, turn on radius, turn joint, etc.

Minimally safe or maximally safe?

Medial Axis - Set of maximally safe points.

Maximize **clearance** during travel

Clearance:

Travel distance from cfg to closest \mathscr{C}_{obst}

Theory

The Medial Axis

- Medial Axis: The "safe points" subset of C-space that follows one of:
 - 2-Points: Equidistant from 2 or more nearest obstacle points
 - Singularity Set: Singularities (ridges) in the distance function

•

• How do we define **clearance** in non-holonomic models?

Basic Model Example

Galaga Model:

• State: x_0, y_0, \dot{y} • Control: \dot{x}

Chooses translation in the x direction within limits, but moves at a constant speed in the y direction (drift).

New!!!

2-points vs singularity set?

Clearance Function is discontinuous in certain non-holonomic models!

Method

Input: Starting state x_0 and number of trajectories r.

Output: Clearance of the shortest path from state.

Input: Starting state x_0 and number of trajectories r. Output: Clearance of the shortest path from state.

1. Send out *r* trajectories w/ random controls.

Input: Starting state x_0 and number of trajectories r. Output: Clearance of the shortest path from state.

- 1. Send out *r* trajectories w/ random controls.
- 2. Advance trajectories until first one hits.

Input: Starting state x_0 and number of trajectories r. Output: Clearance of the shortest path from state.

- 1. Send out r trajectories w/ random controls.
- 2. Advance trajectories until first one hits.
- 3. Find closest cfg to collision & use distance metric.

Output: Sample of states approximately on the MA.

1. Pick a ray in the workspace.

- 1. Pick a ray in the workspace.
- 2. Get a new state at the tip of the ray.

- 1. Pick a ray in the workspace.
- 2. Get a new state at the tip of the ray.
- 3. Interpolate along ray.

- 1. Pick a ray in the workspace.
- 2. Get a new state at the tip of the ray.
- 3. Interpolate along ray.
- 4. Get clearance for each in-between state.

Input: A starting state $\overline{x_0}$.

- 1. Pick a ray in the workspace.
- 2. Get a new state at the tip of the ray.
- 3. Interpolate along ray.
- 4. Get clearance for each in-between state.
- 5. Find local maxima (binary search).

Conclusion

Safer Driving with Self-Driving Cars

New algorithm for sampling on MA of non-holonomic state space.

Helps define safety for non-holonomic models.

Aid the development of autonomous vehicles.

Future

Improve efficiency and accuracy of algorithm.

Develop algorithms to compute the singularity set explicitly.

Use MA to solve different problems in real NH systems.

Thank you!

Questions?

