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Abstract— Many physical robot systems operate in safety
critical settings, for example self-driving vehicles, unmanned
aerial vehicles, or industrial arms. Motion planning methods
often only consider a minimal safety requirement, that is
staying a set distance away from risky areas, i.e., maintain
a minimum ‘geometric’ clearance from obstacles. However,
this approach is not suitably adaptable to spaces with narrow
passages of variable widths. For holonomic systems, extensive
work has been considered in maximizing safety by planning
on, or near, the medial axis of configuration space — the set
of configurations equidistant from two or more obstacles.

In this work, we provide a novel look at the medial axis of a
free state space for non-holonomic systems. Specifically, we ob-
serve that the classical definition using equidistant states might
be disconnected for any robot that is not globally small-time
locally controllable. Instead, we consider using the singularity
set of the system dependent clearance function, and conjecture
that this is always a connected structure in state space. Further,
we provide algorithms for approximating clearance in non-
holonomic systems and approximately sampling our new medial
axis structure. We provide experimental validation of improving
clearance compared with randomized sampling of state space.

I. INTRODUCTION

Many applications of robotics are safety critical [1], for
example, self-driving vehicles, unmanned aerial vehicles, or
any armed robot operating near humans. There are differing
philosophies on safety ranging from maintaining above a
minimum distance from obstacles [2], maximizing distance
from obstacles [3], or producing smooth and predictable
behaviors of robot systems [4] depending on the sub-area of
robotics. In motion planning, the distance from obstacles, i.e.,
geometric clearance, is very commonly considered. There
are distinct trade-offs between maintaining above a minimum
clearance vs maximizing clearance, e.g., computational cost
vs reasonable guarantees of safety.

Maximal clearance is highly correlated to the topological
structure and geometric composition of the space. The medial
axis of a space is the set of points with maximal clearance
properties, see Figure 1(a), and has been extensively explored
in geometry and motion planning [5], [6]. There are a few
equivalent definitions of medial axis for a geometric space,
for example: (1) the set of points equidistant to two or
more obstacles or (2) the clearance function’s singularity
(or ‘ridge’) set, i.e., the points on which the gradient is
not defined. Geometric algorithms computing explicit rep-
resentations and sampling-based motion planners alike often

This work was not supported by any organization

Jory Denny, Jeremy LeCrone, Vadim Kudlay, and Andre Shannon
are with the Department of Mathematics and Computer Science, Uni-
versity of Richmond, VA 23173, USA {jdenny, Jjlecrone,
vadim.kudlay, andre.shannon}@richmond.edu

Jory Denny is the Director of SpiRoL: Spider Robotics Lab.

Kiree Kiree

Xobs(
(a) Geometric MA

x)bst
(c) Singularity MA

(b) Equidistant MA

Fig. 1. A point robot that can set its angle of motion in the range
[w/4, 37 /4] while maintaining constant upward velocity. Various medial
axis definitions shown in blue: (a) the geometric medial axis with respect
to position only, (b) the equidistant medial axis with respect to valid
motions (specific equidistant motions shown in dashed red), and (c) our
contribution, the singular set medial axis with respect to valid motions,
(jump discontinuities highlighted in light blue).

exploit these definitions in their core algorithmic approaches.
Despite its widespread appeal, computing explicit represen-
tations is limited to low dimensional spaces (< 3), and even
sampling-based planning methods exploiting its structure are
limited to configuration spaces of holonomic systems.

In this work, we provide a novel perspective for defining
the medial axis of a free state space for non-holonomic
systems. In this setting, we observe that classical approaches
to defining medial axes produce non-equivalent structures
— contrasting their equivalence observed in configuration
spaces for holonomic systems. Rather than geometric dis-
tance, we consider distance between states determined by
feasible motions of a control system and provide examples
showing the inequivalence of (1) the set of states equidistant
to two or more obstacles and (2) the singularity set of the
clearance function, i.e., the states at which the gradient of
the clearance function is not defined, as shown in Figure 1.
Further, our analysis shows that this inequivalence only
occurs when the non-holonomic system is not small-time
locally controllable everywhere and that this causes the
structure produced by definition (1) to be disconnected. To
provide utility to these structures, we produce algorithms for
approximating the clearance of a state and approximately
sampling the medial axis. Our specific contributions include:

e an analysis of two novel medial axis definitions in
state space — characterized by either equidistance to the
boundary or the singularities of clearance — showing
their inequivalence and connectivity properties;

o approximation algorithms for computing the clearance
of a state and sampling the singularity set of the
clearance function; and

o experimental validation of the approach demonstrating
improved clearance compared to randomized sampling
of state space.



II. PRELIMINARIES

To fully understand our novel approach to the medial axis
for non-holonomic systems, we review holonomic systems,
the traditional definitions of medial axis and non-holonomic
systems. We also review related work regarding motion
planning on or near the medial axis.

A. Holonomic Systems and the Medial Axis

Degrees of freedom (DOFs) parameterize a unique place-
ment of a robot (e.g., center of mass position, orientation,
joint angles, etc.) in its two- or three-dimensional world, or
workspace. A configuration ¢ = (g1, q2, ..., qq) is a specifi-
cation of the values for the d DOFs, where ¢; is the ith DOF.
Systems that can be defined through position-only constraints
are deemed holonomic. The set of all possible configurations
is called the configuration space (Cspace) [7], and it can
be partitioned into two main subsets: free space (Cfree)
and obstacle space (C,pst). These two subsets represent all
possible valid, e.g., collision-free, and invalid configurations
respectively.

In general, it is infeasible to explicitly compute any com-
plete representation of Cr... [8]. To overcome this inherent
difficulty, sampling-based motion planners [9] avoid an ex-
plicit representation of C,ps; by noting that a configuration ¢
can be classified into C¢,c. or Cops: efficiently by performing
a workspace collision detection test between the robot placed
at ¢ and the environment. The boundary of C,ps; is denoted
OCopbst and is commonly referred to as the contact space.

For holonomic systems, the clearance CLR(q) of a con-
figuration ¢ is the minimum distance from ¢ to 0Cops¢- The
nearest configuration to ¢ in 9C,ps; is called the witness to the
clearance value. The medial axis of Cfyce, denoted Mc,, ..,
is the set of configurations with maximal clearance. The set
Me,,.. is precisely characterized by any of the following
equivalent definitions:

« the closure of the set of all configurations equidistant
to two or more points on the contact surface, i.e.
configurations with two or more unique witnesses;

« all configurations corresponding to centers of maximally
inscribed hyperspheres in Cyyee;

« all configurations not contained within an optimal path
from another point to 9Cps;;

o all ‘quenching’ points for a ‘grassfire’ wavefront mov-
ing inwards from OC,ps¢;

« all singular ‘ridge’ points of cir(-), i.e., the configura-
tions at which the gradient of clr(-) is not defined.

We highlight the equivalence of the first and last definitions
in particular, as these two statements are most relevant to
our contributions. We will refer to Mc,, .. as the geometric
medial axis.

B. Non-holonomic Systems

A non-holonomic constraint is one that cannot be ex-
pressed as position-only, e.g., a wheeled vehicle where
velocity is constrained to always be oriented in the same
direction as its wheels. A non-holonomic system is one with
non-holonomic constraints. We express the system’s state by

considering the configuration g, its velocity ¢, and any other
relevant derivatives of q. The set of all states is denoted
Xopace and can be split into Xyyee, Xopst, and OX,pse, sim-
ilar to a configuration space. Typically, for non-holonomic
systems a set of allowable controls, Upqc., define admissible
forces that act upon the robot driving it to a new state. Thus,
a control system & = f(x,u) defines the evolution from one
state to another. Additional constraints can be imposed on
motion, e.g., disallowing collisions with obstacles, which is
collectively termed a kinodynamic system. Thus, the motion
planning problem for a non-holonomic system is seeking to
find a time-varying series of allowable controls to drive a
system from a start state to a goal region while remaining
entirely within Xy,.c.

An important feature influencing motion planning for any
kinodynamic system is whether or not it is small-time locally
controllable (STLC) in all of Xf,c.. To clarify STLC, first
define the reachable set from z in time ¢, R(¢, x), to be all
states attainable from z in less than ¢ time, applying any
admissible controls from Up4c.. Then, a system is STLC at
a state = if  is contained in the interior of R(t,z) for all
(small) t > 0.

C. Related Work

A common solution to the motion planning problem
is the utilization of sampling-based methods, e.g., Proba-
bilistic RoadMaps (PRMs) [9]. Most often, sampling-based
motion planners randomly select and progressively expand
and connect robot configurations to form an approximate
graph representation of Cy,..., called a roadmap. A roadmap
encodes valid states as its nodes and transitions between them
as its edges. In order to find a path, a starting state and
goal region are connected to the roadmap, and a feasible
path is extracted from it. While many approaches attempt to
improve sampling by generating configurations near 9Cppst,
e.g., [10]-[13], they do not properly maintain any safety
guarantees, e.g., maximal distance from the obstacles.

Many purely geometric approaches have been proposed
to construct or plan directly on the medial axis of the
workspace [14], [15], combine it with potential fields [16], or
extend it to higher order graph structures, e.g., the General-
ized Voronoi Graph [17], [18]. Other work approximates the
‘skeleton’ of the workspace medial axis and can be useful for
sampling [19]-[21]. For example, these methods randomly
sample points on the surfaces of a set of partially overlapping
maximal spheres, and then use this to guide a sampling-based
planner. However, collectively these methods are expensive
and can only be used in 2D or 3D workspaces.

Optimal and near-optimal sampling-based planners [22]
can be configured to optimize for clearance in conjunction
with path length. However, this adds a prohibitive cost
to optimal planning as is demonstrated in [23]. Another
category of planners, Transition-based planning [24], can be
configured to optimize for clearance. This method however
does not directly sample or plan along the medial axis.

A category of sampler, Medial Axis Probabilistic
RoadMap (MAPRM) [6], retracts configurations to the me-



dial axis of Cfpec. This is guaranteed to sample inside of
narrow passages more often than uniform random sampling.
These methods have been applied to high dimensions [25],
uniformly sampling the medial axis [26], and RRTs [23].

Recent work uses Support Vector Machine (SVM) classi-
fication to quickly approximate the medial axis [27]. In this
method, obstacles are given unique labels for classification
and samples are assigned labels according to their nearest
obstacle. The medial axis can then be approximated by
applying a max-margin push on a sample until its label
changes.

Other approaches utilize and reason about clearance during
planning, but do not directly alter a node’s clearance. For
example, volume-based sampling with RRT* [28] utilizes a
node’s clearance to define a hypersphere in Cf... which is
entirely visible to the node. In this way, an efficient extension
and biasing technique to improve the efficiency of RRT was
created.

Further, clearance can be used to analyze and deform
already planned paths [3], [29]. In many cases, these methods
rely on high clearance corridors.

All of these related approaches operate with a purely
geometric medial axis framework in a workspace or configu-
ration space only. To the best of the authors’ knowledge, the
medial axis for non-holonomic systems has not been deeply
explored.

ITII. DEFINING A MEDIAL AXIS IN STATE SPACE

Upon first observation, a geometric medial axis does not
necessarily align with the ‘safest’ states for even simple
dynamical systems. Consider Dubin’s car — a car that can
only move forward and change its steering angle — operating
in a space with two infinitely long parallel walls many car
lengths apart. The geometric medial axis is the middle line
parallel and equidistant to both walls. While this sometimes
coincides with ‘safe’ states of a Dubin’s car, it often does
not. In fact, states in which the car’s rear is against one of
the walls are perfectly safe, as they are the farthest from
any wall given the available controls of the system. In this
way, any synonymous definition of the medial axis, encoding
the ‘safest’ states of the system must consider the system
dynamics and admissible controls.

First, we begin by defining an appropriate notion of
clearance for a kinodynamic system (Definition 1) and its
corresponding witness sets (Definition 2). A trajectory m is
a parameterized (bounded) curve in Xgpq.. satisfying the
control system & = f(x,u) for some admissible choice of
time varying controls from Uspece. A trajectory moves an
initial state © € X,e. to a terminal state ©’ € Xypqce and ¢,
denotes the cost of 7, e.g., arclength, time, energy used, etc.
Let Ipx,,., (z) denote the set of all collision trajectories
taking = to some x' € 9X,ps, While remaining entirely in
Xrree €xcept at the terminus 2. Then,

Definition 1: the clearance, CLR(x), of a state x €
Xiree U OXppse is the minimum cost of all trajectories in

Myx,,., (), that is to say:

CLR(z) = min Cr

7 € lpx,,,, ()
(we define CLR(x) = 0 for all x € 0X,ps¢) and

Definition 2: the witness set of © € Xfpee, WIT(2), is
the set of all termini ' € OX,,; realizing the clearance of
x, i.e., all states ¥’ € OX,p, for which there exists m €
Msx,,., (z) terminating at 2’ such that ¢, = CLR(z).

Next, we introduce definitions for a medial axis structure
in X akin to the definitions introduced for Mc,, ...
Herein, we are similarly motivated by the goal of identifying
a medial axis structure My, .. in Xj.. through which
trajectories should pass to maximize ‘safety’ from collisions.

Definition 3: The multiple witness medial axis, M,
is the closure of the set of states © € Xjf... with two or
more witness points, that is |WIT(z)| > 2.

Definition 4: The singular medial axis, M, is the set
of states & € Xfyee U0 X b5 at which the gradient of CLR(-)
is undefined.

At first glance, the reader may assume that these two sets
are equal, recalling that the relevant statements in the geo-
metric setting were equivalent, both producing the structure
Me,.,.., see Section II. As our first major contribution, we
will show that these two definitions are in fact nonequivalent
for general kinodynamic systems. To accomplish this, we
introduce a simple example and observe that Mg, 4 not only
includes ‘ridge’ points 2 (coinciding with states in M5 at
which CLR is continuous but fails to be differentiable), but
also includes states = at which CLR is discontinuous. We note
that the presence of discontinuities in CLR for kinodynamic
systems appears to be the core reason these definitions differ
on Xy, whereas the definitions coincide in Cy.. Where
discontinuities of CLR will never arise.

Theorem 1: Mprs  Mging

Proof: We introduce a simple example with constant
upward ‘drift’ we refer to as the Galaga system!. In this
system, we have a point moving in a subset of two dimen-
sional space subject to constant upward velocity (in the xo-
direction) and limited controls on left / right movements (in
the x-direction).

Specifically, consider a simple robot with state described
by its location & = (x1,22) in Xspgee = R2, subject to the
control system

(21,22) = (u,1) for u € Uspaee = [—1,1].

For any = € Xypace and ¢ > 0, note that R(¢,z) is a linear
cone with a flat horizontal front, opening upward from x
with edges forming angles 7/4 and 37/4 relative to the
positive z;-axis. We further introduce obstacles X,p4; so that
its complement

Xfree = (—1,1) x (—00,0] U (=5,1) x (0, 00),

i.e, free space is a straight narrow vertical alley whose left
wall abruptly opens into a wider alley above x5 = 0.

The Galaga system was inspired by the 1981 classic arcade game of the
same name and its subsequent incarnations.



Applying Definition 3, we find the multiple witness medial
axis is composed of two vertical lines, located at the center
of respective portions of the hallway Xy, i.e.

Mpts = {(0,1’2) ) S —1} U {(—2,%2) i) Z 0}

Note that the lower portion of this structure terminates at
x9 = —1; the precise location above which R(-, z) no longer
intersects the ‘closer’ obstacle at 1 = —1. This is shown in
Figure 1(b).

Applying Definition 4, we find the singular medial axis
includes all of M, (all points on M, are ‘ridge’ points at
which CLR is continuous but not differentiable), while M ;4
includes two additional line segments in Xspqce at which
CLR has discontinuities, shown in Figure 1(c). Namely, note
that points below the line segment connecting (0,—1) to
the corner (—1,0) are closest to the wall 1 = —1, while
those above this line segment are closest to the wall at z; =
1. Thus, CLR is discontinuous at all points on this straight
line segment. Meanwhile, CLR is also discontinuous at all
points on the horizontal ‘shelf’ portion of 0X,ps¢, at zo = 0,
where CLR is trivial, while all nearby points z € X have
nontrivial clearance. Summarizing, we have

MSing = Mpts U {(3317_731 - 1) —1<2 < O}
U{(z1,0) : =5 < x; <0},

which proves the theorem. [ ]
We also explored a variety of extensions to the Galaga
system with more physically relevant applications:
e We consider a drift-free model with states again given
by position z = (21, x2) in Xspace = R?, subject to controls

(&1,22) = (vcosf,vsinb).

With constraints on velocity and angle of motion — say
vV € [Umin,1] and 6 € [n/4,37w/4] — the reachable sets
R(t,z) take on nearly the same structure as before, though
the front of R(t,x) is a circular arc here, rather than a flat
horizontal edge. If we introduce the same obstacles X5 as
before and assume vy, > 0, then M, and Mg,  are
identical to those detailed in the Galaga model. On the other
hand, if we allow for any amount of ‘downward’ motion, i.e.,
letting v, < 0O, the clearance function CLR experiences
no discontinuities in this case and the structures M,;; and
Ming coincide. Note that this system is a simplification of
the common Unicycle model.

e Next, we consider a model with second-order controls on
x9, where states are given by x = (z1, 22, &2) in Xspgee =
R3. The system is governed by controls

(C.ﬂl,fE.Q) = (ul,u2) for (Ul,UQ) S L{space = [71, 1]2,

restricted to X'fpc.. This is a three-dimensional analog of the
suddenly widening alley considered previously.. In particular,
set X¢ree so that 21 € (—1,1) when 22 <0, 21 € (—5,1)
when x5 > 0, and further restrict o > vy, > 0 for
all positions (z1,z2). Regarding the bound v, > O,
consider an airplane flying at constant elevation through a
long, narrow passage, then v,,;, may indicate the minimum
airspeed the aircraft can maintain without stalling.
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Fig. 2. A point robot that can control z1 velocity and x2 acceleration, with
limitation 2 > Uy in. Optimal paths minimize arclength. Cross sections of
medial axis structures at a slice &2 > Umin : () the equidistant medial axis
with optimal motions shown in dashed red (concave parabolas continued by
straight lines with slope vsmin /21), and (b) the singular set medial axis, with
discontinuities exhibiting the complimentary convex parabolic structure.

For this model, we take c, to be the arclength of the
path 7 in X,p4c.. Considering the projection of paths to the
z1T2-plane, optimal controls always decrease =2 (applying
ug = —1), so optimal paths follow convex parabolic paths
until either the terminus is reached, or until ©o = Vmin
at which point the path continues as a straight line with
9 constant and @; optimally chosen. This setting again
produces a disconnected multiple witness medial axis, M
containing (x1,x2,&2) if 1 = —2 and x5 > 0, or else
1 = 0 and xo < p(i3), where p(is) = 9 — % when
.’,‘CQ > Umin + 1 and p(!L‘g) = %(‘rg — ’Umin)z + Umin when
Vmin < T2 < Umin + 1. While the singular medial axis
contains additional structures connecting the ends of M
to the corner (—1,0, @3) that take the form of optimal paths
reflected about the origin. In particular, for o > v + 1
fixed, Ming contains the segment of the parabolic arc
229 = i3 — (x1 + (1 — i3))? between ;7 = —1 and
1 = 0. Moreover, when vy, < T2 < Upin + 1, Msing
contains points on the parabolic arc Ty = Vpin (T2 — Vmin) +
%(1’2 — Umin)2 from r1 = —1 to r1 = jZ’g — Umin — 1
continued by the line zo = do(1 + z1) + %(1’2 — Vpin)?
from z; = &9 — Uppin, — 1 to 1 = 0. A visual comparison
of M5 and Mg for this model are shown Figure 2.

9

Upon further reflection, we recognized that the systems
in which Mg, Ms are STLC everywhere, while
the systems in which the definitions differ fail to be STLC
everywhere. Intuitively, this can be thought of in a few
ways. First, the notion of distance in non-STLC systems
is asymmetric, i.e., going from state z to x’ costs differ-
ent from a path taking z’ to x, if such a reverse path
even exists. Second, we can consider a propagating wave-
front formulation of medial axis similar to the grassfire
construction in geometric settings, i.e., the set of quenching
points of a wave-front propagating uniformly from OC,ps¢.
Applying similar reasoning to the nonholonomic setting, we
see that in an STLC everywhere system, wave-fronts still
propagate in all directions from 0X,;s;, see Figure 3(a).
Whereas, in non-STLC systems, wave-fronts propagate in
limited directions corresponding to reverse integration along
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Fig. 3. Wavefront propagations of 9 X,ps¢: (a) an STLC everywhere system
and (b) a non-STLC everywhere system.

limited local controls available in the system, see Figure 3(b).
Thus, every portion of the boundary of a wave in an STLC
system is a proper propagating wave-front, while non-STLC
systems (with proper configurations for X,s;) produce wave
boundary portions that are stationary.

Because of its lengthy nature, we only provide a proof
sketch for this second main theoretical contribution.

Theorem 2: Given a system that is not STLC everywhere.
Then, there exists an Xfpee C Xgpace such that My, #
Msing'

Proof: [Sketch] Let © € Xgpqcc be a state at which the
system is not STLC. By definition, x is contained in the
boundary of the reachable set R(t,z) for all ¢ sufficiently
small. Construct X, so that X, coincides locally with
the boundary of R(t,z), moving from z. This will create a
discontinuity of CLR at x. Continue constructing X,ps; by
extending OX,ps; until you enclose R(t,z) in the bounded
complement X'f,.... Since this space contains a discontinuity
of the clearance function, clearly, Mp.s # Ming. ]

Given the properties discussed about M;y,4, as it contains
Ms as a subset and appears to always be a connected
structure, we propose this as the ideal definition of the medial
axis of X'y,... For the rest of the paper, we refer to M;ng
as Mx,, ...

Notice that Theorem 2 only shows existence of a specific
construction of X,;s¢, without exploring essential properties
of X, that lead to discontinuities of CLR. We leave
it to future work to more deeply explore this and other
theoretical properties of our novel definitions. Specifically,
like the geometric setting, we are interested in exploring
the connectivity properties of My, . . We conjecture that
Mz, is always connected and that a retract exists from
Xfree onto My, ..

IV. APPROXIMATING CLEARANCE

The core operation of medial-axis approaches is deter-
mining the clearance of a configuration, see Section II-C,
as a side effect of the computation, a witness configuration
is easily obtained. An exact algorithm for our definition of
clearance in Xy,..., Definition 1, would necessitate modeling
and solving instances of high-dimensional boundary value
problems. However, even modeling 0X,;5; iS computation-
ally difficult. Instead, we propose an approximate algorithm
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Fig. 4. Pose of a state (teal) for a car-like system and three random bang-
bang trajectories (blue). Dots show the “time” at which the control switched
along the trajectory. The left-most trajectory would be used to approximate
clearance in this case, as it collides with 0X,p; first in time.

Algorithm 1 Approximate Clearance of a State CLR(-)

Input: State x, number of trajectories n, probability p, time-
step At
Output: Approximate clearance and witness

1: Trajectories sequence Il = (7y,...,m,) « (z,...,T)
2: Controls U = (ug,...,uy)

3: for i < 1 to n do < Initialze each trajectory
4:  u; < RANDOM_CONTROL()

5: Boolean col <— FALSE

6: Step t <0

7: repeat

8 t+t+1

9: fori<+1tondo < Step along each trajectory
10: 7wt f(riTh g, At)

11: col < col V IN_COLLISION(7r})

12: if RAND() < p then

13: u; < random_control()

14: until col

15: Witness trajectory m! = FIRST_COLLISION(IT)
16: return (LENGTH(7'), 71")

for computing clearance and a witness of a state similar in
spirit to prior work [25].

To approximate the clearance of a state, n random bang-
bang trajectories are chosen and analyzed for the one that
collides with 0X,s; first in time. The algorithm is shown
in Algorithm 1. The algorithm’s complexity lies in an
incremental evaluation of the candidate trajectory set. To
initialize each trajectory 7; a control u; is chosen based on a
policy, either fully random or optimal. Then, at each iteration
t, the next state in time is computed through numerical
integration of a time step At, e.g., using Fourth Order
Runge-Kutta, and checked for validity. Additionally, each
trajectory has a small probability p to switch controls during
the iteration, based upon the same policy as initialization.
p defines a binomial distribution allowing variable time
for switching controls. Once a collision is found, a binary
search, FIRST_COLLISION(-), is performed between the last
two states of a trajectory for a more precise computation of
the clearance. If more than one trajectory collides in the same



iteration, the binary search reveals the shorter trajectory. An
example execution of this algorithm is shown in Figure 4.
Overall, the complexity of this approach requires O(nt)
collision checks per execution, where ¢ is the number of steps
before the first trajectory collision. This can be improved by
using a binary stepping approach to O(nlogt), but requires
more extensive book-keeping to ensure that no obstacles
are jumped over. In this paper, we implemented the more
expensive approach. Further, we note that this is a Monte-
Carlo algorithm. This implies that a greater number of input
trajectories will increase the accuracy of the approximation
— under mild assumptions on the smoothness of OX,ps¢-

V. APPROXIMATING SAMPLING OF My, ..

One of the primary goals of this work is generating
samples on My, .. Our approach is based on the Uni-
form Medial Axis Probabilistic RoadMap (UMAPRM) tech-
nique [26]. However, we had to extend this algorithm in
a significant way because UMAPRM was never built for
approximate medial-axis detection. We decided on this ap-
proach because of its properties — namely it uniformly
samples a medial-axis structure. The main idea of this
approach is to sample and discretize a random line segment
in state space, and then look at properties of adjacent samples
to detect a medial axis crossing.

The algorithm is shown in Algorithm 2. It begins the same
as UMAPRM by sampling and discretizing a random line
segment in state space into a sequence of states, X. After,
the clearance of each state x; € X is approximated using
Algorithm 1. Then, passing over these clearance values,
the algorithm searches for one of two things: (1) a ‘big’
jump in clearance value, representing a possible detection
of a jump discontinuity, and (2) a ‘plateau’ in the clearance
value, representing a local maximum of clearance. After, the
adjacent pairs of states are further analyzed through a binary
search to yield samples very close to the medial axis. In case
(2), this will always be successful. However, in case (1), a
false detection might have been made and false positives are
further filtered out at this point of the algorithm. The final
set of samples is returned. An illustration of the algorithm
is shown in Figure 5.

The overall time complexity of this operation will be O(n)
approximate clearance computations, where n = %, i.e., the
number of discretized states along each line segment. In
combination with the analysis of clearance, this yields an
approximately cubic time algorithm for generating samples.
Clearly, this is inefficient and there is significant room for
improvement. Our contribution in this work is theoretical
in nature, and we pose these algorithms as a first step to
sampling on or near My, .. In the future, we will invest
more heavily in developing efficient approximation schemes
of both clearance and sampling.

VI. EXPERIMENTAL ANALYSIS

Because our method is currently of theoretical interest in-
stead of direct application, we provide a simple experimental
validation of our theory. Specifically, our theoretical analysis
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Fig. 5.  Galaga system with an example My _  structure shown in
blue. Jump discontinuities are highlighted in light blue. Line segments are
randomly sampled and discretized (red). Clearance deltas (positive, negative,
zero, or above a threshold d) are used to find the medial axis crossings.

Algorithm 2 Sample My, ..

Input: Sample length [, step length r, plateau size k, dis-
continuity threshold d
Output: Set of samples M on, or near, My, .
: State & <+ RANDOM_STATE()
Direction ¢/ <— RANDOM_DIRECTION()
Sequence size n « [1]
States X = (z1,...%,) < SAMPLE_LINE(z, x + [7)
Clearances C = (cq,...,¢n) < (CLR(21),...,CLR(n))
Candidate pairs set M <+ ()
for i< 1ton—1do
if |¢; — ¢;41| > d then
M+~ MU {(xi,$i+1)}
fori<k+1ton—kdo
if 1S_PLATEAU(X, C, i, k) then
M M U{(zi—1,2i11)}
. return BINARY_SEARCH_FOR_XMA (M)

< Discontinuities

R AN A R

< Plateaus

— = =
W N = O

indicates that our sampling mechanism for generating states
on My, . will yield higher clearance samples than uniform
random sampling of X'f;.cc.

A. Setup

We implemented our medial axis sampling routine, de-
noted with MA, and uniform random sampling of state space,
denoted with Uniform in C++ using the GNU gcc compiler
version 7.4.0. All experiments were run on Ubuntu 18.04
with an Intel® Core’ i5-8500 CPU at 2.8 GHz and 16 GB
of RAM.

For our simple study, we validated our theoretical in-
sights using our Galaga motion model and the second-
order system similar to an aircraft, denoted Airplane,
see Section III for details of their kinematic models. Both
robots are represented as small cubes mimicking point sizes.
We deployed both systems in two simulated environments
varying complexity, see Figure 6. Their details are as follows:

1) Simple (Figure 6(a)) — a single box on the left of an
infinite corridor creating an opening. Our theoretical
analysis demonstrated that M, is disconnected and
inequivalent to My, ..
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(b) Complex

(a) Simple

Fig. 6. Environments used to evaluate clearance algorithms. (a) A simple
block and (b) A scattered arrangement of rectangular obstacles in infinite
corridors (left and right bound shown in black. The sampling area is the
visible area, top to bottom.

2) Complex (Figure 6(b)) — four rectangular obstacles in
an infinite corridor providing a much more complicated
M Xfre. Structure for the systems.

Sampling areas for the infinite corridors are shown in the
figures.

We used a weighted Euclidean distance metric to measure
distance favoring positional components of a state to velocity
components. To measure clearance for our sampling mech-
anism (Algorithm 1), we used 25 random trajectories and a
probability p = 0.02 using either optimal controls (denoted
MAOptimal) or random controls (denoted MARandom).
The time step of all numerical integration is At = 0.05
seconds. Our sampler uses a length [ = 4 and a step length r
the size of an environmentally dependent resolution. Its other
parameters of plateau size k and discontinuity threshold d are
tuned to the environment-system combination.

For all experiment-system combinations, we invoked the
sampler routine 2500 times. Afterward, we measure the suc-
cessful samples, execution time, and the average clearance of
the successful samples. To measure the clearance, we used
50 random trajectories and a probability p = 0.05 of using
optimal controls — we chose these values to acquire a more
accurate measure of the sampler’s clearance. All results are
averaged over 10 runs. Avg clearance is shown in Figure 7.

B. Discussion

Analysis of our primary metric in this study, clearance,
shown in Figure 7, clearly demonstrates that our medial
sampler achieves between 1.25x and 1.75x improvement
compared to Uniform across the environment-system com-
binations. Further, there is minimal differences between
MAOptimal and MARandom. A deeper glance at which
detection component generates samples in the MA meth-
ods, i.e., either a discontinuity or plateau, conveys that the
MARandom approach has a bit more noise and detects more
discontinuities. However, in environments like Complex,
MAOptimal can sometimes randomly miss its closest wit-
ness state and produce false positives. In the future, we would
like to perform a deeper study into the false-positive rate and
false-negative rate of our detection heuristics. This should
provide further insight into designing a better clearance and
sampling algorithms in non-holonomic systems.
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Fig. 7. Average sample clearance fpr MAOptimal (blue) and MARandom
(light blue) normalized to Uniform (green) for each of the four
environment-system combinations.

We omit reporting exact time figures, as this is not the
focus of the paper. However, for reference, the method is
approximately five orders of magnitude slower than uniform
random sampling. We remind the reader that this is not sur-
prising as a uniform random sampling requires a single CD
invocation per attempt, while our method requires a Monte-
Carlo approximation of clearance at many states along a
line segment in Xf.... We plan to tackle the efficiency and
applicability of our sampler in the future.

In terms of success rates of the samplers, while we omit
exact numbers, uniform sampling is approximately 2.5 times
as successful as our medial axis sampler. This is mainly due
to the probability of the underlying approach to our sampler
— sampling line segments of X't,... Our success rate is
coupled to the probability of sampling a random line segment
that intersects Mx;, ... This will almost always be smaller
than the probability of uniform random sampling — the ratio
of the hypervolume of Xy, to the hypervolume of Xp;.

Our experiment successfully validates our theoretical
contribution and supports our hypothesis. Specifically, we
showed that sampling My, .. will yield high clearance
states, which supports our conjecture that this is the ideal
structure for representing the collection of ‘safest’ states.

VII. CONCLUSION

In this work, we have proposed and explored definitions
for a medial axis of free space for nonholonomic robots.
Specifically, we showed the inequivalence of classical def-
initions of a medial axis, and we proved that this holds
for non-STLC systems. Further, we proposed algorithms for
approximating the clearance of a state in state space, and
approximately sampling our proposed medial axis M, ..
We validated our algorithms in a variety of settings to show
that the states sampled truly improve upon the clearance.

In the future, we will explore the connectivity properties of
our My, . definition. We will also look for more efficient



algorithmic approaches to sampling and exploiting My, ..
for use in sampling-based motion planners.
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